Keras Cat Dog 분류 - 8. 딥러닝 시작하기 - 과대적합
설치 부터 실제 분류까지 keras로
Cat과 Dog 데이터 셋으로 끝까지 해보기
2019/06/13 - [주제를 딱히 정하기 싫을때] - Keras Cat Dog 분류 - 7. 딥러닝 시작하기 - 텐션보드 사용하기
Keras Cat Dog 분류 - 7. 딥러닝 시작하기 - 텐션보드 사용하기
" 설치 부터 실제 분류까지 keras로 Cat과 Dog 데이터 셋으로 끝까지 해보기 2019/06/13 - [주제를 딱히 정하기 싫을때] - Keras Cat Dog 분류 - 6. 딥러닝 시작하기 - 모델 구성 Keras Cat Dog 분류 - 6. 딥러닝..
redapply.tistory.com
11 과대적합
-
설명은 챕터 6을 참고
-
MaxPolling2D
-
Dropout 적용
def cnn_api2(input_shape):
input_tensor =Input(input_shape, name = "input")
x = layers.Conv2D(filters= 32 ,kernel_size= (3,3) , padding= "same", activation='relu')(input_tensor)
x = layers.MaxPooling2D(pool_size=(2,2))(x)
x = layers.Dropout(rate=0.25)(x)
x = layers.Conv2D(filters= 64 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.MaxPooling2D(pool_size=(2,2))(x)
x = layers.Dropout(rate=0.25)(x)
x = layers.Conv2D(filters= 128 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.MaxPooling2D(pool_size= (2,2))(x)
x = layers.Dropout(rate= 0.25)(x)
x = layers.Flatten()(x)
x = layers.Dense(units= 1024 , activation='relu')(x)
x = layers.Dropout(rate= 0.25)(x)
output_tensor = layers.Dense(units= no_classes, activation= 'sigmoid', name= "output")(x)
model = models.Model([input_tensor],[output_tensor])
model.compile(loss = losses.binary_crossentropy, optimizer= optimizers.RMSprop(lr=0.0001), metrics= ['acc'])
return model
-
저장할 모델을 식별하기위해 프로젝트 name을 바꿔줍니다.
project_name = 'dog_cat_CNN_api2_model'
-
새롭게 적용될 모델도 바꿔줍니다
newType_model = cnn_api2(input_shape)
-
전체 코드는 다음과 같습니다.
from datetime import datetime
import os
import keras
save_dir = './my_log'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
project_name = 'dog_cat_CNN_api2_model'
def save_file():
time = datetime.today()
yy = time.year
mon = time.month
dd = time.day
hh = time.hour
mm = time.minute
sec = time.second
time_name = str(yy) + str(mon) + str(dd) + str(hh) + str(mm) + str(sec) +'_my_' + project_name + '_model.h5'
file_name = os.path.join(save_dir,time_name)
return file_name
callbacks = [
keras.callbacks.TensorBoard(
log_dir = save_dir,
write_graph=True,
write_images=True
),
keras.callbacks.EarlyStopping(
monitor = 'val_acc',
patience=10,
),
keras.callbacks.ModelCheckpoint(
filepath= save_file(),
monitor = 'val_loss',
save_best_only = True,
)
]
from keras import Input
from keras import layers ,models, losses ,optimizers
batch_size = 256
no_classes = 1
epochs = 50
image_height, image_width = 150,150
input_shape = (image_height,image_width,3)
#MaxPolling2d,Dropout 적용
def cnn_api2(input_shape):
input_tensor =Input(input_shape, name = "input")
x = layers.Conv2D(filters= 32 ,kernel_size= (3,3) , padding= "same", activation='relu')(input_tensor)
x = layers.MaxPooling2D(pool_size=(2,2))(x)
x = layers.Dropout(rate=0.25)(x)
x = layers.Conv2D(filters= 64 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.MaxPooling2D(pool_size=(2,2))(x)
x = layers.Dropout(rate=0.25)(x)
x = layers.Conv2D(filters= 128 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.MaxPooling2D(pool_size= (2,2))(x)
x = layers.Dropout(rate= 0.25)(x)
x = layers.Flatten()(x)
x = layers.Dense(units= 1024 , activation='relu')(x)
x = layers.Dropout(rate= 0.25)(x)
output_tensor = layers.Dense(units= no_classes, activation= 'sigmoid', name= "output")(x)
model = models.Model([input_tensor],[output_tensor])
model.compile(loss = losses.binary_crossentropy, optimizer= optimizers.RMSprop(lr=0.0001), metrics=['acc'])
return model
from keras.preprocessing.image import ImageDataGenerator
from PIL import Image
train_datagen = ImageDataGenerator(rescale = 1./255)
val_datagen = ImageDataGenerator(rescale = 1./255) # 검증데이터 스케일 조정만 합니다.
train_generator = train_datagen.flow_from_directory(
os.path.join(copy_train_path,"train"),
target_size = (image_height, image_height),
batch_size = batch_size,
class_mode = "binary"
)
validation_generator = val_datagen.flow_from_directory(
os.path.join(copy_train_path,"validation"),
target_size = (image_height, image_height),
batch_size = batch_size,
class_mode = "binary"
)
newType_model = cnn_api2(input_shape)
hist = newType_model.fit_generator(train_generator, steps_per_epoch = 20000//batch_size, epochs= epochs,
validation_data = validation_generator, validation_steps = 5000//batch_size,
callbacks = callbacks)
import matplotlib.pyplot as plt
train_acc = hist.history['acc']
val_acc = hist.history['val_acc']
train_loss = hist.history['loss']
val_loss = hist.history['val_loss']
epochs = range(1,len(train_acc)+1)
plt.plot(epochs,train_acc,'bo',label='Training acc')
plt.plot(epochs,val_acc,'r',label='Val acc')
plt.title('Training and Val accuracy')
plt.legend()
plt.figure()
plt.plot(epochs,train_loss,'bo',label='Training loss')
plt.plot(epochs,val_loss,'r',label='Val loss')
plt.title('Training and Val loss')
plt.legend()
plt.show()
-
이전 보다 정확도는 약간 올라갔지만 과대적합이 남아있습니다.
-
다음은 레이어 층을 늘려 보겠습니다.
변경된 부분
-
모델 레이어 추가
def cnn_api3(input_shape):
input_tensor =Input(input_shape, name = "input")
x = layers.Conv2D(filters= 32 ,kernel_size= (3,3) , padding= "same", activation='relu')(input_tensor)
x = layers.Conv2D(filters= 32 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.MaxPooling2D(pool_size=(2,2))(x)
x = layers.Dropout(rate=0.25)(x)
x = layers.Conv2D(filters= 64 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.Conv2D(filters= 64 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.MaxPooling2D(pool_size=(2,2))(x)
x = layers.Dropout(rate=0.25)(x)
x = layers.Conv2D(filters= 128 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.Conv2D(filters= 128 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.MaxPooling2D(pool_size= (2,2))(x)
x = layers.Dropout(rate= 0.25)(x)
x = layers.Flatten()(x)
x = layers.Dense(units= 1024 , activation='relu')(x)
x = layers.Dropout(rate= 0.25)(x)
output_tensor = layers.Dense(units= no_classes, activation= 'sigmoid', name= "output")(x)
model = models.Model([input_tensor],[output_tensor])
model.compile(loss = losses.binary_crossentropy, optimizer= optimizers.RMSprop(lr=0.0001), metrics=['acc'])
return model
-
저장할 모델을 식별하기위해 프로젝트 name을 바꿔줍니다.
project_name = 'dog_cat_CNN_api3_model'
-
새롭게 적용될 모델도 바꿔줍니다
newType_model = cnn_api3(input_shape)
변경된 전체 코드
from datetime import datetime
import os
import keras
save_dir = './my_log'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
project_name = 'dog_cat_CNN_api3_model'
def save_file():
time = datetime.today()
yy = time.year
mon = time.month
dd = time.day
hh = time.hour
mm = time.minute
sec = time.second
time_name = str(yy) + str(mon) + str(dd) + str(hh) + str(mm) + str(sec) +'_my_' + project_name + '_model.h5'
file_name = os.path.join(save_dir,time_name)
return file_name
callbacks = [
keras.callbacks.TensorBoard(
log_dir = save_dir,
write_graph=True,
write_images=True
),
keras.callbacks.EarlyStopping(
monitor = 'val_acc',
patience=10,
),
keras.callbacks.ModelCheckpoint(
filepath= save_file(),
monitor = 'val_loss',
save_best_only = True,
)
]
from keras import Input
from keras import layers ,models, losses ,optimizers
batch_size = 256
no_classes = 1
epochs = 50
image_height, image_width = 150,150
input_shape = (image_height,image_width,3)
def cnn_api3(input_shape):
input_tensor =Input(input_shape, name = "input")
x = layers.Conv2D(filters= 32 ,kernel_size= (3,3) , padding= "same", activation='relu')(input_tensor)
x = layers.Conv2D(filters= 32 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.MaxPooling2D(pool_size=(2,2))(x)
x = layers.Dropout(rate=0.25)(x)
x = layers.Conv2D(filters= 64 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.Conv2D(filters= 64 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.MaxPooling2D(pool_size=(2,2))(x)
x = layers.Dropout(rate=0.25)(x)
x = layers.Conv2D(filters= 128 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.Conv2D(filters= 128 ,kernel_size= (3,3) , padding= "same", activation='relu')(x)
x = layers.MaxPooling2D(pool_size= (2,2))(x)
x = layers.Dropout(rate= 0.25)(x)
x = layers.Flatten()(x)
x = layers.Dense(units= 1024 , activation='relu')(x)
x = layers.Dropout(rate= 0.25)(x)
output_tensor = layers.Dense(units= no_classes, activation= 'sigmoid', name= "output")(x)
model = models.Model([input_tensor],[output_tensor])
model.compile(loss = losses.binary_crossentropy, optimizer= optimizers.RMSprop(lr=0.0001), metrics=['acc'])
return model
from keras.preprocessing.image import ImageDataGenerator
from PIL import Image
train_datagen = ImageDataGenerator(rescale = 1./255)
val_datagen = ImageDataGenerator(rescale = 1./255) # 검증데이터 스케일 조정만 합니다.
train_generator = train_datagen.flow_from_directory(
os.path.join(copy_train_path,"train"),
target_size = (image_height, image_height),
batch_size = batch_size,
class_mode = "binary"
)
validation_generator = val_datagen.flow_from_directory(
os.path.join(copy_train_path,"validation"),
target_size = (image_height, image_height),
batch_size = batch_size,
class_mode = "binary"
)
newType_model = cnn_api3(input_shape)
hist = newType_model.fit_generator(train_generator, steps_per_epoch = 20000//batch_size, epochs= epochs,
validation_data = validation_generator, validation_steps = 5000//batch_size,
callbacks = callbacks)
import matplotlib.pyplot as plt
train_acc = hist.history['acc']
val_acc = hist.history['val_acc']
train_loss = hist.history['loss']
val_loss = hist.history['val_loss']
epochs = range(1,len(train_acc)+1)
plt.plot(epochs,train_acc,'bo',label='Training acc')
plt.plot(epochs,val_acc,'r',label='Val acc')
plt.title('Training and Val accuracy')
plt.legend()
plt.figure()
plt.plot(epochs,train_loss,'bo',label='Training loss')
plt.plot(epochs,val_loss,'r',label='Val loss')
plt.title('Training and Val loss')
plt.legend()
plt.show()
음. 그렇게 특별히 나아 보이지를 않습니다.
오히려 정확도가 더 떨어졌습니다.
그리고 36에포크 만에 훈련이 중단 되었군요
다음 절에서 데이터 증식을 통해 과대적합을 잡아 보겠습니다.